
Cold Start or Hot Start? Robust Slow Start in Congestion Control
with A Priori Knowledge for Mobile Web Services
Jia Zhang

Zhongguancun Laboratory
Beijing, China

zhangj@mail.zgclab.edu.cn

Haixuan Tong
Zhili College, Tsinghua University

Beijing, China
tonghx20@mails.tsinghua.edu.cn

Enhuan Dong
Institute for Network Sciences and
Cyberspace, Tsinghua University

Beijing, China
dongenhuan@tsinghua.edu.cn

Xin Qian
Meituan Inc.

Shanghai, China
qianxin08@meituan.com

Mingwei Xu
Zhongguancun Laboratory

Institute for Network Sciences and
Cyberspace, Tsinghua University

Department of Computer Science and
Technology, Tsinghua University

Beijing, China
xumw@tsinghua.edu.cn

Xiaotian Li
Meituan Inc.

Shanghai, China
xiaotian.li@meituan.com

Zili Meng
Hong Kong University of Science and

Technology
Hong Kong, China

zilim@ust.hk

ABSTRACT
Mobile web services value a quick loading of contents in the first
page, which is quantified by the above-the-fold time of the first
page (first AFT) and is likely to fall into the slow start phase in
congestion control. However, the widely deployed slow start mech-
anism is “cold start”, which manually hardcodes the parameters
and is not suitable for the first AFT of heterogeneous mobile web
services. We revisit the slow start mechanism and find that it could
be optimized with a priori knowledge. However, blindly relying on
a priori knowledge is not robust enough to handle the fluctuating
mobile networks and unpredictable application traffic. In this paper,
we propose WiseStart, a “hot-start-based” slow start mechanism.
WiseStart utilizes the priori knowledge to set the initial parameters,
continuously probes the new connection to handle the fluctuating
network conditions, and carefully adapts to the application-limit
scenarios. We implementWiseStart in a popular mobile web service
online in production. Comprehensive experiments demonstrate that
WiseStart reduces the First AFT by 25.43% and the average RCT at
connection establishment by 16.15% compared to the default slow
start mechanism and other state-of-the-art baselines.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
WWW ’24, May 13–17, 2024, Singapore, Singapore
© 2024 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 979-8-4007-0171-9/24/05. . . $15.00
https://doi.org/10.1145/3589334.3645393

CCS CONCEPTS
• Networks→ Transport protocols.

KEYWORDS
Transport Layer, Slow Start, Mobile Web Service, Hot Start
ACM Reference Format:
Jia Zhang, Haixuan Tong, Enhuan Dong, Xin Qian, Mingwei Xu, Xiaotian Li,
Zili Meng. 2024. Cold Start or Hot Start? Robust Slow Start in Congestion
Control with A Priori Knowledge for Mobile Web Services. In Proceedings
of the ACM Web Conference 2024 (WWW ’24), May 13–17, 2024, Singapore,
Singapore. ACM, New York, NY, USA, 9 pages. https://doi.org/10.1145/
3589334.3645393

1 INTRODUCTION
Recently, a sharp increase in the usage of mobile web services has
been observed. The latest statistics demonstrate that mobile users
become the largest proportion of global Internet users [28]. Mobile
web services value the content in the first page [7] – the loading time
of contents above the fold (above-the-fold time, AFT)1 is important.
During the beginning of a connection, the connection has no infor-
mation about the network, therefore existing transport protocols
(e.g., TCP or QUIC) and congestion control algorithms has to probe
the network. Such a process is called slow start, which is also re-
sponsible for the loading of those above-the-fold contents. However,
the current design of slow start is usually a “cold start”, where the
start-up phase only relies on the hard-coded specifications rather
than any up-to-date information about users or applications. This
imposes great challenges on optimizing the performance of First
1AFT is proposed by Google and defined as the time that the visible part of the page is
loaded.

2870

https://doi.org/10.1145/3589334.3645393
https://doi.org/10.1145/3589334.3645393
https://doi.org/10.1145/3589334.3645393
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3589334.3645393&domain=pdf&date_stamp=2024-05-13

WWW ’24, May 13–17, 2024, Singapore, Singapore Jia Zhang et al.

AFT. Even if the hard-coded value evolves with time (e.g., the initial
congestion window (CWND) goes up from 4MSS [22] 20 years ago
to 32MSS [23] in industry practices now), the static setting of slow
start parameters does not match the need of optimizing First AFT
under fluctuating and wide-ranging mobile network conditions.

Our large-scale measurement of one popular mobile web service
further demonstrates the significance of optimizing slow start in
mobile web services. A large amount of application data is concen-
trated when users start to access the application. We found that
19.38% of total requests, most of which contribute to the First AFT,
are in the slow start phase. While, the “cold-start-based” slow start
mechanism is insufficient for bandwidth utilization (§2.1). Our fur-
ther parameter sweeping in §4.3 shows that even fine-tuning the
parameter, as long as it’s static across connections and time, is still
suboptimal to the First AFT.

This motivates us to revisit the slow start mechanism and pro-
pose WiseStart, a new slow start mechanism for mobile web ser-
vices. Our intuition is that with a priori knowledge, we can directly
use the appropriate initial sending rate. In this case, slow start no
longer suffers from blindly probing like cold start, but is able to uti-
lize the previous application and network conditions and perform
a “hot start”. With the current routing policy, connections with the
same pair of source IP and destination IP mainly experience the
same path condition. Our large-scale measurements on the server
side also demonstrate that the connection states are similar for
the same access IP address. Therefore, WiseStart utilize the prior
knowledge to set the initial sending parameters (§2.2).

However, merely setting the slow start parameters based on
a priori knowledge can be fatal in some cases. WiseStart should
be robust to the fluctuations of both mobile network conditions
and application traffic. First, the available bandwidth can fluctuate
and be different from the prior knowledge, especially in mobile
networks [17]. Blindly reusing historical information may lead to
performance degradation when bandwidth fluctuates so much that
the prior knowledge is invalid. In response, WiseStart continuously
probes the available bandwidth to update the prediction for the
new connection. WiseStart estimates the available capacity based
on the initial few ACK packets and decides whether to continue up-
probing or drain the queue. Second, the application traffic pattern
affects the estimation of the available capacity as well. The request
initiation is affected by user behavior, which is unpredictable and
might conflict with the connection’s state. When the connection
is intermittently in the application-limit state [11] and a request is
initiated, the measurement of capacity may be inaccurate. This in
turn affects the effectiveness of the slow start mechanism. Therefore,
we design an application-limit detection mechanism in WiseStart
and adapt WiseStart to cater for the connection states and traffic
patterns (§2.3, §3).

We implement WiseStart atop Cubic based on QUIC in the pro-
duction environment of a Meituan’s popular mobile web service
with O(10M) daily active users. We compare WiseStart with the
default slow start mechanism and other state-of-the-art baselines.
Comprehensive experiments demonstrate that WiseStart achieves
consistent high performance, reduces the First AFT by 25.43%, and
reduces the average RCT at the beginning of the connection by
16.15% against baselines (§4).

In summary, our key contributions in this paper are:

• Through online measurement of a mobile web service in a
production environment, we expose the problems with the
First AFT of mobile web services (§2).
• We propose WiseStart, an adaptive slow start mechanism,
which reuses historical connection information and adapts
to the fluctuating mobile networks and the irregular impulse
requests of mobile applications (§3).
• We deploy and evaluate WiseStart in a mobile web service at
Meituan. Extensive experiments show that WiseStart achieves
consistent high performance both in production environments
and on various locally emulated network conditions (§4).

2 MOTIVATION
In this section, we conduct a measurement study on the First AFT
of a popular mobile web service. We first explain that the bad
performance of first AFR comes from the mismatch between ap-
plication requirements and transport layer capabilities in the slow
start phase (§2.1). Then, we present the opportunity of our design
choices to address the mismatch (§2.2), and describe the design
challenges (§2.3).

2.1 Why optimize the slow start?

Significant First AFT performance. For mobile web services,
the performance of First AFT is critical. If the application takes too
long to load, users may give up waiting and switch to other appli-
cations [24]. Among all the contents on a page, the content of the
first screen (i.e., above the fold) is undoubtedly the most important
– users will be partially satisfied if contents in their sights (above
the fold, technically) are ready. Google reports that ads appearing
above the fold have 30% higher visibility than others [5]. Moreover,
such a phenomenon happens quite often on mobile phones. For
example, mobile users sometimes switch between multiple appli-
cations. The operating system of mobile phones will periodically
clean up the applications running in the background (e.g., minutes
in Android [2]). In this case, if a user stays several minutes at an-
other application and switches back, the connection has to be set
up again and the content has to be reloaded [1].

We make an in-depth measurement study on one region of a
popular mobile web service of Meituan with O(10M) daily active
users, containing one million requests over 10 days. We count the
number of requests and total bytes transferred within each sec-
ond in each session and present the probability density within 30
seconds after application initialization and connection establish-
ment respectively. As shown in Fig. 1, 19.38% of the requests were
initiated within 1 second after application initialization, and their
overall data volume accounted for 12.67% of the full connection
data. This indicates that even one user might use the application for
a long time, and a considerable amount of requests are only from
the first second. A similar situation is observed after the connection
establishment, and the frequency of new connections is 5.72 times
per user per day. Therefore, improving the load speed of the first
page content is crucial to the user experience.

Mismatch in the slow start phase. At the beginning of the
connection establishment, the transport layer starts from a small
CWND or sending rate and gradually increases them to probe the

2871

Cold Start or Hot Start? Robust Slow Start in Congestion Control with A Priori Knowledge for Mobile Web Services WWW ’24, May 13–17, 2024, Singapore, Singapore

0 10 20 30
Time (s)

0
5

10
15
20

PD
F

(%
)

Request Num
Total bytes

(a) Application Initialization

0 10 20 30
Time (s)

0

5

10

15

PD
F

(%
)

Request Num
Total bytes

(b) Connection Establishment
Figure 1: Distribution of the number of requests and total bytes
transferred within each second during the use of the application.
(a) Probability density function (PDF) within 30s after application
initialization. (b) Probability density function (PDF) within 30s after
connection establishment.

available capacity. This process is the slow start mechanism. How-
ever, during the slow start phase, it is not possible to utilize the
bandwidth well. Taking the 2Mbps bandwidth and 200ms RTT as
an example, using the default slow start algorithm, it takes five
RTTs to reach the available bandwidth, which will last one second.
As the capacity cannot be efficiently used, the request completion
time (RCT) and First AFT increases, and the user experience deteri-
orates. To investigate the performance difference of the first second
of the overall connection, we also measure the RCT of requests
sent within 1s after connection establishment and the RCT of the
overall connection. Results show that the RCT for the first second
is 1.5 times of the average of the overall connection, which further
exacerbates the first AFT.

2.2 Design Opportunity
Now that a static setting of initial CWND is suboptimal, our intu-
ition is that we can directly use the a priori knowledge to set the
initial CWND and sending rate. Fortunately, for content providers,
it is indeed possible to obtain relevant information from historical
connections or parallel connections from the same user. On the one
hand, mobile web services may establish multiple connections in
a short period when users switch between foreground and back-
ground. Two applications of Company M have similar scenarios,
with 1.84 and 3.52 connections per user per day, respectively. On
the other hand, the same access IP address belongs to the same AP
or base station, so the connections with the same access IP have
similar access network conditions. Moreover, connections with the
same pair of source IP and destination IP mainly experience the
same path. Therefore, for content providers, connections with the
same client IP will experience similar path conditions.

Our measurements further verify the above observation on the
similarity of the performance between multiple connections from
the same IP. We record the minimum RTT (minRTT) and maximum
available bandwidth (BtlBw) of each connection in another mea-
surement campaign on our mobile web service. Our measurement
lasts 14 days, and contains information of 2.3 million IPs with 11.65
million connections. We calculate the ratio of the minRTT (and
BtlBw) between two connections from the same client IP, and plot
the Cumulative Distribution Function (CDF) of the ratio results
in Fig. 2. Note that the two connections are not necessary to be
simultaneous – we calculate the ratio for all connections sharing
the same client IP in the 14-day measurement. We find that in more

than 60% of the cases, the difference ratio of the minRTT of two
connections from one client IP is less than 20%. And from the view
of absolute RTT values, in 70% of the cases, the difference is less
than 6 ms. The ratio of BtlBw shows consistent similarity as well.

2.3 Design Challenges
WiseStart improves the efficiency of the slow start with the a priori
knowledge. However, blindly relying on a priori knowledge is not
robust enough in the following two aspects:

Robust to mobile network. In mobile scenarios, the path capac-
ity may be variable. Mobile network conditions fluctuate due to
wireless channel fading, user moving or competing flows [26, 28].
Reports show that fluctuations in bandwidth can reach more than
two times even for one single connection [17], let alone reusing
the information of connections from a different time. Just as our
measurement in Fig. 2 shows, there are 8.5% cases where BtlBw
changes by more than 5 times. When fluctuations are so large that a
priori knowledge is invalid, blindly setting the initial CWND based
on previous (probably large) CWNDs may result in a large number
of packet losses due to overshooting the degraded network, or un-
used available capacity due to an unnecessary small initial CWND.
Therefore, WiseStart needs to probe the available bandwidth as
well for new connections.

Robust to application traffic. Meanwhile, the application traffic,
determined by unpredictable user behaviors, is also fluctuating
in mobile web services. Thus, when the application plans to send
a request, if the connection is in the application-limit state, the
previous parameters will be less effective as well. Fig. 3 shows
an example: if the user’s click behavior is sparse, there may not
be enough application data to fill the capacity. We replay real-
world application traces extracted from Meituan and find that there
are 14.46% of the time that there is no application data, as shown
in Fig. 4. In this case, the estimated bandwidth is limited by the rate
the application generates data and can not reflect the bottleneck
bandwidth. The inaccurate bandwidth measurement affects the
capacity estimation of new connections, which in turn affects the
timing of exiting WiseStart. Therefore, WiseStart also needs to
adapt the design to handle different, mainly application-limit, states
of the connection.

3 DESIGN
In this section, we present the design of WiseStart. We first give
an overview (§3.1) and then describe three key design details: (1)
How to store and reuse the prior knowledge (§3.2). (2) How to
quickly and accurately probe new connections (§3.3). (3) How to
adapt the bandwidth estimation methods to the application-limit
scenario (§3.4).

3.1 Design Overview
As shown in Fig. 5, WiseStart has three key design points:

Initial parameters. First, WiseStart records the bandwidth and
minRTT of each connection. When a new connection is established,
it looks up the historical record based on the IP address and sets
the initial CWND and sending rate.

2872

WWW ’24, May 13–17, 2024, Singapore, Singapore Jia Zhang et al.

0.01 0.1 0.5 1 2 10 100
Ratio between connections

0.0

0.5

1.0

CD
F

Ratio of BtlBw
Ratio of minRTT

Figure 2: Distributions of the ratio of BtlBw
and minRTT between two sequential connec-
tions from the same peer IP address, in our
large-scale passivemeasurement on the server
side.

0.0 0.5 1.0 1.5 2.0
Time (s)

0

100

200

Si
ze

(K
B)

Unsent Bytes
Response Size

Figure 3: An example of the application-limit
state. The blue lines show the response size of
the request sent at that time, and the orange
line shows the unsent bytes on the server side.

0 500 1000 1500 2000 2500 3000
Unsent Bytes (KB)

0.25

0.50

0.75

1.00

CD
F

(%
)

Total bytes

Figure 4: Distribution of the unsent bytes on
the server side. There are 14.46% cases that
there is no application data waiting to be sent
at that time.

Initial
Parameters

Design

Historical Information Table
Historical InformationIP Addr. Connection Information

Sending Phase

Probe
Phase
Drain
Phase

Maintenance Phase

Adaptation
Design

Decision Phase
Adaptation

Design

Probe Design

Figure 5: WiseStart Overview.

Probe. Second, WiseStart continuously probes the new con-
nection through three phases. By estimating the bandwidth and
minRTT of the new connection, WiseStart decides whether to con-
tinue probing or to drain over-sent packets.

Adaptation. Third, we adapt the whole design for the possible
application-limit scenarios.

Wisestart utilizes CWND to manage the in-flight bytes and en-
ables pacing to regulate the sending rate. It can be integrated with
any congestion control algorithm that includes a slow start phase.
Wisestart is implemented on the sender side and does not require
receiver-side modifications. Algorithm 1 describes the pseudo-code
of how WiseStart works specifically.

3.2 Set initial parameters with priori knowledge
One key design choice of WiseStart is to store the historical con-
nection information and set the initial CWND or sending rate of
the new connections accordingly. Ideally, the CWND should equal
to the path capacity. Therefore, WiseStart stores the round-trip
propagation time (RTProp) and the bottleneck bandwidth (BtlBw)
to calculate the capacity.

Record and store historical information. WiseStart uses a LRU
hash table on the server side to cache information of historical
connections. Each table entry comprises four fields: record times-
tamp, peer IP address, the maximum delivery rate (BtlBW), and the
minimum RTT (RTProp). When a connection is closed, WiseStart
records the above four states.

Set initial parameters. When a new connection is established,
WiseStart looks up the hash table for BtlBw (labeled as Last_BtlBw)
and RTProp (labeled as Last_RTProp) based on the peer IP. WiseS-
tart sets the initial CWND as𝐶𝑊𝑁𝐷 = 𝐿𝑎𝑠𝑡_𝐵𝑡𝑙𝐵𝑤 ∗𝐿𝑎𝑠𝑡_𝑅𝑇𝑃𝑟𝑜𝑝 ,
and paces the packets in the initial CWND to avoid packet loss
caused by this large burst. Considering the requirement of probing
the new connection,WiseStart sets the pacing rate as 𝑃𝑎𝑐𝑖𝑛𝑔_𝑟𝑎𝑡𝑒 =
2 ∗ 𝐿𝑎𝑠𝑡_𝐵𝑡𝑙𝐵𝑤 . If there is no record in the hash table for that IP
address, WiseStart falls back to the default slow start mechanism
which increases CWND from 10 MSS.

Algorithm 1: WiseStart Algorithm
1 Initialization:
2 𝐿𝑎𝑠𝑡_𝑅𝑇𝑃𝑟𝑜𝑝 , 𝐿𝑎𝑠𝑡_𝐵𝑡𝑙𝐵𝑤 ← 𝐿𝑜𝑜𝑘𝑈𝑝 (𝐼𝑃);
3 𝛾 ← 6, 𝜅 ← 20 * MSS;
4 On connection establishment (§3.2):
5 begin
6 𝐶𝑊𝑁𝐷 ← 𝐿𝑎𝑠𝑡_𝐵𝑡𝑙𝐵𝑤 * 𝐿𝑎𝑠𝑡_𝑅𝑇𝑃𝑟𝑜𝑝 ;
7 𝑃𝑎𝑐𝑖𝑛𝑔_𝑅𝑎𝑡𝑒 ← 2 * 𝐿𝑎𝑠𝑡_𝐵𝑡𝑙𝐵𝑤 ;
8 end
9 On each packet sent before the 1st ACK (§3.3.1):

10 begin
11 if 𝐼𝑛𝑓 𝑙𝑖𝑔ℎ𝑡 ≥𝑚𝑖𝑛(𝐶𝑊𝑁𝐷 , 𝜅) then
12 𝑃𝑎𝑐𝑖𝑛𝑔_𝑅𝑎𝑡𝑒 ← 0.5 * 𝐿𝑎𝑠𝑡_𝐵𝑡𝑙𝐵𝑤
13 end
14 if 𝐼𝑛𝑓 𝑙𝑖𝑔ℎ𝑡 ≥𝑚𝑖𝑛(𝐶𝑊𝑁𝐷 , 1.5 * 𝜅) then
15 𝑃𝑎𝑐𝑖𝑛𝑔_𝑅𝑎𝑡𝑒 ← 1 * 𝐿𝑎𝑠𝑡_𝐵𝑡𝑙𝐵𝑤
16 end
17 end
18 On the 1st - 𝛾 − 1th ACK (§3.3.2):
19 begin
20 𝐶𝑊𝑁𝐷 ← 𝐶𝑢𝑟_𝐼𝑛𝑓 𝑙𝑖𝑔ℎ𝑡 ;
21 𝐷𝑖𝑠𝑎𝑏𝑙𝑒𝑃𝑎𝑐𝑖𝑛𝑔();
22 end
23 On the 𝛾th ACK (§3.3.3):
24 begin
25 𝐸𝑠𝑡_𝐵𝑡𝑙𝐵𝑤 ← 𝐶𝑎𝑙𝑐𝑢 (); /* Eq. (1) */

26 if 𝐶𝑊𝑁𝐷 ≥ 𝐸𝑠𝑡_𝐵𝑡𝑙𝐵𝑤 * 𝐸𝑠𝑡_𝑅𝑇𝑃𝑟𝑜𝑝 then
27 𝐷𝑟𝑎𝑖𝑛();
28 else
29 𝑃𝑟𝑜𝑏𝑒 ();
30 end
31 end

3.3 Probe the new connection
Considering the fluctuation of mobile networks, it is not enough
to set the initial parameters, but also to continue probing the path.
WiseStart estimates the bandwidth of the new connection by mea-
suring the delivery rate of first several packets and makes further
decisions on whether to increase the CWND or drain the queue
subsequently. WiseStart performs path probe through the following
three phases.

2873

Cold Start or Hot Start? Robust Slow Start in Congestion Control with A Priori Knowledge for Mobile Web Services WWW ’24, May 13–17, 2024, Singapore, Singapore

3.3.1 Sending Phase. The Sending phase is from setting the initial
parameters to receiving the first ACK. In the Sending phase, WiseS-
tart sends the first several packets at a higher rate (2*Last_BtlBw) to
probe higher bandwidth, and sends subsequent packets at a lower
send rate (0.5*Last_BtlBwd) to avoid packet loss due to the over-
speed sending. 𝜅 in Algorithm 1 should be higher than the bytes
acknowledged by the first 𝛾 ACK packets, which is the number
of ACK packets used to estimate the available bandwidth. Specif-
ically, when Inflight is greater than 𝜅 (which means the packets
for bandwidth probe are enough), the pacing_rate is set to 0.5 *
Last_BtlBW to empty the queue. When Infligth is already greater
than 1.5 * 𝜅 , the average sending rate exactly equals the Last_BtlBW,
so WiseStart exits queue emptying, and the pacing_rate can be set
to Last_BtlBW.

3.3.2 Maintenance Phase. The Maintenance phase is from receiv-
ing the first ACK packet to receiving the 𝛾th ACK packet. In the
Maintenance phase, WiseStart converges CWND to the BDP and
continuously records the information from the received ACKs. First,
when the first ACK is received, WiseStart disables the pacing mech-
anism and sets CWND as the amount of inflight data subtracts the
number of bytes of lost packets. Therefore, packets are allowed to
send only when ACK packets are received, and the CWND grad-
ually converges to the path BDP. Besides, WiseStart records the
information from ACK packets, including the receiving time, the
number of acknowledged bytes, and the estimated RTT.

3.3.3 Decision Phase. The Decision phase occurs when receiving
the𝛾 th ACKpacket.WiseStart estimates the available bandwidth (la-
beled as Est_BtlBw) and RTProp (labeled as Est_RTProp) of the new
connection and decides whether to probe or drain subsequently.
First, WiseStart estimates Est_RTProp as the minRTT over the first
𝛾 ACK packets, and computes Est_BtlBw based on the acknowl-
edged bytes:

𝐸𝑠𝑡_𝐵𝑡𝑙𝐵𝑤 =

∑𝛾

𝑖=2𝐴𝑐𝑘_𝐵𝑦𝑡𝑒𝑠𝑖
𝑅𝑒𝑐𝑣_𝑇𝑠𝑡𝑚𝑝𝛾 − 𝑅𝑒𝑐𝑣_𝑇𝑠𝑡𝑚𝑝1

(1)

Second, WiseStart calculates Est_BDP as 𝐸𝑠𝑡_𝐵𝐷𝑃 = 𝐸𝑠𝑡_𝐵𝑡𝑙𝐵𝑤 ∗
𝐸𝑠𝑡_𝑅𝑇𝑃𝑟𝑜𝑝 and compares it with CWND. If Est_BDP is larger than
CWND, WiseStart enters the Probe phase; otherwise, WiseStart
enters the Drain phase.

In the Probe phase, WiseStart increases the CWND from current
CWND, following the default slow start algorithm of exponentially
increasing CWND. In the Drain phase, WiseStart converges to the
BDP according to the strategy of the Maintenance phase.

3.4 Adapt to application-limit scenarios
Implicit in the design of probing the new connection (§3.3) is the
assumption that the amount of application data is sufficient to probe
the connection bandwidth. The assumption exits in two phases:

• Maintenance phase.Maintaining CWND as the inflight bytes
implicitly assumes that the inflight bytes reflect the BDP of
the path. However, when application data is insufficient, in-
flight bytes only reflect the amount of data generated by the
application. The CWND may be so small that it cannot be sent
when the application has more data in the Maintenance phase.

• Decision phase.When estimating Est_BtlBw, there is an as-
sumption that the bottleneck is in the network. However, if
the application data is insufficient, the Est_BtlBw is limited by
the rate that application generates data and can not reflect the
bottleneck bandwidth of the path.

However, as §2.3 stated, transient application data shortage occurs
in mobile web services. Therefore, WiseStart adapts to application-
limit scenarios for the above two issues.

Detection of application-limit state.WiseStart performs real-
time detection of application-limit state. Previous solutions [11] are
atop CWND-based algorithms, whose detection criterion is coarse-
grained that whether the inflight bytes fill the current CWND.
However, a fine-grained and rate-based-algorithm-supported detec-
tion is needed. WiseStart measures the actual sending rate (labeled
as Est_SendRate) of the sender and compares it with the pacing
rate set by the sender to decide if the current sending behavior is
limited by the pacing rate or by the application. The measurement
of Est_SendRate lasts in all three phases in §3.3.

Adaption to theMaintenance phase andDecision phase. In the
Maintenance phase, when receiving the first ACK, WiseStart com-
pares Est_SendRate with the setting rate. If it is in the application-
limit state, WiseStart continues pacing the packets as the Sending
phase. While in the Decision phase, when receiving the 𝛾th ACK
packet, WiseStart compares Est_BtlBw with Est_SendRate if it is in
the application-limit state. If Est_BtlBw is lower than Est_SendRate,
which means the actual sending data fills the path, WiseStart enters
the Drain phase; if not, WiseStart enters the Probe phase.

4 EVALUATION
Wefirst introduce the implementation and experimental setup (§4.1).
We then evaluate WiseStart as follows:
• Performance in the real world. We implement WiseStart
in a popular mobile web service. Experiments with real users
show that WiseStart reduces RCT within 1s of connection
establishment by 16.15%, with acceptable computation and
memory overhead (§4.2).
• Consistent high performance. WiseStart achieves great
improvement under different network conditions, and reduces
the First AFT by 25.43% (§4.3).
• Design Effectiveness. We analyze WiseStart’s effectiveness
of handling the fluctuating bandwidth and the application-
limit state. We also investigate the fairness and friendliness of
WiseStart (§4.4).

4.1 Experimental Setup
We implement WiseStart atop Cubic based on QUIC2 in user space.
WiseStart only requires modification on the sender side. We eval-
uate WiseStart in both large scale production environment (§4.2)
and emulated networks (§4.3, §4.4).

Large scale production environment. We implement WiseStart
in a popular mobile web service of Meituan, with O(10M) daily
active users. We manually modified the server-side settings to allow
a fraction of users to useWiseStart as the slow start mechanism. We
2We use an IETF QUIC implementation, ngtcp2 [3].

2874

WWW ’24, May 13–17, 2024, Singapore, Singapore Jia Zhang et al.

measure the performance for 73 hours and collect 86 million request
logs from more than 50 countries and regions. When users access to
the application, the client establishes a persistent connection with
the frontend server and send requests. The load balancer hashes the
request to one of the front-end servers of the cluster based on the
client IP address. Therefore, WiseStart is deployed on the front-end
server and stores the connection information locally in the form of
a static hash table. The connection of the same peer IP address will
be always routed to the same front-end server.

Emulated environment. We also evaluate WiseStart in a con-
trolled environment by emulating different network conditionswith
Mahimahi [20] and replaying real application traces. In our testbed
evaluation, we implement a simple request-response messaging
application atop WiseStart, which sends requests and responses
with application traces, and collects statistics for evaluation.

Baselines. We compare the performance of WiseStart respectively
with several baselines to demonstrate its effectiveness.
• S-Cubic is a newly proposed slow start approach which reuses
the historical information and enters into congestion avoid-
ance directly at the first ACK [12].
• Cubic32 and Cubic64 statically set the initial CWND to 32 and
64 respectively based on Cubic.
• Cubic and BBR are the default algorithms.

4.2 Real-world performance

RCT Performance. We collect RCT from client side and show
the RCT within 1 second of the connection establishment in Fig. 6.
WiseStart achieves the best performance in real-world scenarios.
WiseStart is able to reduce the RCT within 1 second of connection
establishment by 8.56% to 16.15% on average in real-world scenarios,
with a reduction in tail RCT of 22.65% to 52.34%. Although S-Cubic
utilizes historical information, it directly enters into the congestion
avoidance phase without probing the new connection. On the one
hand, the historical information may fail due to the fluctuation of
mobile networks. On the other hand, S-Cubic does not perform
application-limit adaptation, which also makes the CWND setting
much lower when exiting slow start. Therefore, S-Cubic does not
achieve good performance andWiseStart reduces the RCT by 16.15%
compared to S-Cubic. Cubic64 show improvements compared to
Cubic. However, due to the wide range of bandwidth under mobile
networks, the fixed initial CWND may be suboptimal, which is
insufficient at some times and is too large that causes packet loss
at other times. Therefore, both Cubic32 and Cubic64 experience
long tail latency, and WiseStart also reduces the RCT by 15.55% and
8.56% compared to Cubic32 and Cubic64, respectively. As for Cubic
and BBR, the performance is poorer due to the small initial CWND
and sending rate.

Overhead. We count the hit rate and occupied memory of hash
table in hours. As shown in Fig. 7, the hit rate of the hash table is
only 24.59% within one hour after WiseStart first deployed. The hit
rate gradually increases as the number of accessed users increases,
and reaches 52.66% after 60 hours. This means that the about half
of users can reuse historical connection information. For memory
occupation, since we allocate memory dynamically, the memory
occupation also increases with the number of accessed users, and

WiseStart
S-Cubic

Cubic
Cubic32

Cubic64BBR

0.2

0.3

0.4

0.5

0.6

R
C

T
(s

)

(a) Distribution of the RCTs.

P90 P95 P990.5

1.0

1.5

No
rm

al
ize

d
 R

CT

WiseStart
S-Cubic
Cubic

Cubic32
Cubic64
BBR

(b) Normalized tail RCTs.
Figure 6: In real world experiments, WiseStart brought 16.15% re-
duction on average RCT, and 52.34% for the 99𝑡ℎ percentile (the tail)
completion time within one second of the connection establishment.

0 10 20 30 40 50 60 70
Time (h)

20

30

40

50

Hi
t R

at
e

(%
)

5

10

15

Si
ze

(M
B)

Mem Space
Hit Rate

Figure 7: The hit rate and memory usage of the hash table.

Parameter Value Range (Min - Max)
RTT(ms) 10 - 50, 50 - 100, 100 - 150, 150 - 300

RTT Jitter / RTT 0 - 0.2, Jitter max = 20ms
Loss rate(%) 0 - 0, 0 - 0.1, 0.1 - 5
Buffer / BDP 0.3 - 0.9, 0.9 - 1.1, 1.1 - 1.5

Table 1: Network condition parameters.

the final memory occupation in steady state is about 19MB. The
additional CPU utilization of WiseStart is 3.6%.

4.3 Improvement on First AFT
We evaluate the improvement ofWiseStart on the First AFT through
controlled experiments in emulated scenarios with real user traces.
First, we collect and replay traces from real application, and mark
the first-screen requests. Second, we use the network traces col-
lected and used in previous works [8, 15, 16, 18, 19] to emulate
real mobile network environment through Mahimahi [20]. Our
emulated experiments involve three scenarios: stationary cellular
scenario, highly variable scenario and WiFi scenario, with a total
of 70 traces. We set other network parameters randomly selected
within the range in Tab. 1. WiseStart and S-Cubic run through all
scenarios sequentially as the other algorithms did, without pre-
recording any information about the scenarios. This means that the
historical information stored is about the previous scenario, which
may be significantly different from the current scenario.

We record the final completion time of all first-screen requests
and show the results of all scenarios in Fig. 8. Fig. 8a shows the
Tukey boxplot of the First AFT and the RCT of the first-screen
requests. To further analyze the improvement of WiseStart, we
record the reduction in First AFT for different algorithms compared
to Cubic under each scenario in Fig. 8b, i.e., positive values imply
performance gains.

WiseStart achieves the lowest First AFT, and reduces the overall
First AFT by a median of 5.84% to 25.43%, and 9.64% to 36.81% in the
95𝑡ℎ percentile. As shown in Fig. 8b, WiseStart shows a consistent
improvement and reduces First AFT in 91.43% of the scenarios, with
an average reduction of 8.5%. S-Cubic also reduces First AFT in

2875

Cold Start or Hot Start? Robust Slow Start in Congestion Control with A Priori Knowledge for Mobile Web Services WWW ’24, May 13–17, 2024, Singapore, Singapore

WiseStart

S-Cubic
Cubic

Cubic32
Cubic64

BBR

0.0

0.5

1.0

1.5

Fi
rs

t A
FT

 (s
)

 AFT
RCT

0.1

0.3

0.5

R
C

T
(s

)

(a) First AFTs and RCTs of the first-
screen requests.

WiseStart

S-Cubic
Cubic

Cubic32
Cubic64

BBR

−10

0

10

20

Im
pr

ov
em

en
t (

%
)

(b) Improvement of First AFT
compared to Cubic.

Figure 8: WiseStart reduces the overall First AFT, and shows a con-
sistent improvement in 91.43% of the scenarios.

0.2 0.4 0.6 0.8 1.0
Bandwidth Multiplier

0

100

200

300

400

500

Lo
st

 B
yt

es
 (K

B)

0.0

0.5

1.0

1.5

2.0

FC
T

(s
)

Ideal FCT Cubic FCT
Cubic64 FCT S-Cubic FCT
WiseStart FCT Lost Bytes

(a) BtlBW decreased.

1.1 1.3 1.5 1.7 1.9
Bandwidth Multiplier

0

100

200

300

400

Lo
st

 B
yt

es
 (K

B)

0

100

200

300

400

500

600

FC
T

(m
s)

(b) BtlBW increased.
Figure 9: WiseStart presents robustness to fluctuating bandwidths.
WiseStart reduces packet loss by about 20% when bandwidth de-
creases and reduces FCT by 29.79% when bandwidth increases.

81.42% of the scenarios, with an average reduction of 5.7%. How-
ever, since S-Cubic does not probe new connections, when meeting
large new bandwidth, it takes a long time to converge and a severe
performance degradation occurs. This demonstrates the necessity
of exploring new connections. Cubic32 and Cubic64 only have
improvements in about 60% of the scenarios and the overall per-
formance is degraded. Increasing the initial CWND could improve
the link utilization to some extent, while it may also introduce
significant packet loss. Cubic64 and Cubic32 have 21.67% additional
packet loss compared to WiseStart, and in some scenarios the loss
rate even reaches 1.56%. BBR performs worse than Cubic, and it is
because BBR tends to overestimate RTProp and brings packet loss.

4.4 WiseStart Deep Dive
We analyze WiseStart’s effectiveness of handling the fluctuating
bandwidth (§4.4.1) and the application-limit state (§4.4.2). Then, we
investigate its fairness (§4.4.3).

4.4.1 Fluctuating bandwidth. We analyze the resilience of WiseS-
tart to the fluctuating bandwidth of new connections. We set the
base bandwidth as 24 Mbps with 40 ms RTT and buffer size of 1 BDP.
We vary the ratio of bandwidth of the new connection to the base
bandwidth from 0.2 to 2.0 and evaluate the performance on the new
connection.We perform experiments using long flows (1024KB) and
record the flow completion time (FCT) and loss bytes. For WiseStart
and S-Cubic, we firstly run an experiment through base bandwidth
once to record the information of the base connection in WiseStart.
Then we run a new experiment through the new connection. In ad-
dition, we directly set the pacing rate and CWND as the bandwidth
and BDP of the new connection respectively, as Ideal.

Cubic
WiseStart

WiseStart-wa

0.4

0.8

1.2

Fi
rs

t A
FT

 (s
)

(a) First AFT

WiseStart
WiseStart-wa

0

20

40

60

C
W

N
D

 (K
B

)

(b) CWND after the
fisrt ACK

WiseStart
WiseStart-wa

0

2

4

6

B
tlb

w
 (M

bp
s)

(c) 𝐸𝑠𝑡_𝐵𝑡𝑙𝐵𝑤 in Deci-
sion phase

Figure 10: The adaptation to application-limit state contributes 14.6%
to the reduction of the First AFT.

When the bandwidth of the new connection is lower than that
of the old connection, there is not much space for optimization in
the slow start mechanism due to the low bandwidth. As shown
in Fig. 9a, WiseStart, S-Cubic and Cubic64 are all consistent with
the Ideal for the FCT. WiseStart reduces packet loss because it
probes the new connection and drains additional queues. In con-
trast, S-Cubic directly enters the congestion avoidance phase after
reusing old connection information. Since the buffer is set as one
BDP, S-Cubic drops a lot of packets when the new bandwidth is
reduced to less than half of the old connection. For strategies of
increasing the initial CWND (e.g. Cubic64), when the capacity of
the new connection is smaller than the initial CWND, packet loss
occurs at the initial busrt and it will enter the congestion avoidance
phase immediately. In this case, Cubic suffers from more packet
loss because it increases the CWND and will exit slow start after
one RTT of the packet loss. We also notice that WiseStart also
experiences packet loss when the new connection is similar to the
old one. This is due to the inaccurate bandwidth estimation with
the first several ACKs which cause WiseStart to enter the Probe
phase incorrectly. During the slow start phase, the available data
for path condition estimation is insufficient, leading to potential
inaccuracies. However, since packet loss is swiftly detected, and
WiseStart exits the Probe phase promptly, the overall impact on
performance (FCT) is minimal.

For the scenarios where the bandwidth of the new connection is
increased compared to the old one, none of the mechanisms achieve
the Ideal because the accurate information about the connection
is not available at establishment. WiseStart is the closest to the
Ideal, reducing the FCT by 29.79% compared to Cubic when the
bandwidth is increased by a factor of two (Fig. 9b). Increasing
the initial CWND (e.g. Cubic64) can also accelerate the slow start,
while its improvement becomes worse as the difference between
the path capacity and the initial CWND increases. In addition,
WiseStart, Cubic and Cubic64 all suffer from packet loss. This is
because that these algorithms all inevitably use loss to determine
whether to exit the slow start mechanism. S-Cubic does not drop
packets because it does not probe new connections. However, its
performance degrades as the difference between the bandwidth of
the new connection and the old one increases, and is sometimes
even inferior to Cubic.

4.4.2 Application-limit state. To evaluate the effectiveness of Wis-
eStart’s adaptation for the application-limit state, we additionally
disable the adaptation module (WiseStart-wa) and compare its
performance with WiseStart. The experimental setup is the same
as §4.3. As shown in Fig. 10a, WiseStart reduces the First AFT by
14.6% on average and the tail First AFT by 31.98% compared to

2876

WWW ’24, May 13–17, 2024, Singapore, Singapore Jia Zhang et al.

0 20 40 60
Times (s)

0

20

Th
pt

.(M
bp

s)

Cubic Cubic

(a)

0 20 40 60
Times (s)

0

20

Th
pt

.(M
bp

s)

WiseStart WiseStart

(b)

0 20 40 60
Times (s)

0

20

Th
pt

.(M
bp

s)

WiseStart Cubic

(c)

0 20 40 60
Times (s)

0

20

Th
pt

.(M
bp

s)

Cubic Cubic

(d)

0 20 40 60
Times (s)

0

20

Th
pt

.(M
bp

s)

WiseStart WiseStart

(e)

0 20 40 60
Times (s)

0

20

Th
pt

.(M
bp

s)

Cubic WiseStart

(f)
Figure 11: Temporal dynamics of two competing flows. (a)(b)(c) Start
simultaneously, (d)(e)(f) Start with 5s interval

WiseStart-wa. On the one hand, when the first ACK is received,
WiseStart-wa sets the CWND to the inflight bytes, which might
be smaller than the BDP. As shown in Fig. 10b, CWND after the
first ACK of WiseStart-wa is 76.26% lower than WiseStart, which
is 37.8 KB lower on average. On the other hand, the new connec-
tion BDP estimated by WiseStart-wa is lower (Fig. 10c), and thus
WiseStart-wa may enter the Drain phase incorrectly. WiseStart-wa
had a 4.5% higher probability of entering the Drain phase than Wis-
eStart. Theses results demonstrate the necessity of the adaptation
for application-limit states.

4.4.3 Fairness and friendliness. We evaluate WiseStart’s fairness
and friendliness. We set up two server-client pairs sharing the same
bottleneck link with 24 Mbps bandwidth, 40ms RTT, and buffer
size of 1 BDP. We consider both the case where two flows start
simultaneously and where the latter flow starts after the former
one converges (5 seconds later in our experiment). Note that each
WiseStart flow has run through the bottleneck alone in advance
and stored the historical information. As shown in Fig. 11, WiseS-
tart achieves a high degree of fairness towards its own competing
flows. Also, when a WiseStart flow enters a link with a converged
WiseStart flow, WiseStart converges significantly faster than Cubic
(about 10 seconds faster in Fig. 11e). As for the friendliness, the
WiseStart flow can achieve the same throughput with Cubic flow,
and converge fast when entering the path of existing Cubic flows.

5 RELATEDWORK
In the last decades, bandwidth has grown so rapidly that the default
TCP slow start mechanism can no longer accommodate current
bandwidth conditions. When the default initial window within
Linux was designed, the average connection speed was about 1.7
Mbps [10]. While the current report shows that as of late 2021, the
median Wi-Fi bandwidth is 153 Mbps, while the median 5G band-
width merely reaches 304 Mbps [27]. Therefore, plenty of works are
dedicated to improving the initial window andmany CDN providers
have increased the initial window to 32 segments or even 100 seg-
ments [6, 23]. However, due to the wide range of bandwidths under
mobile networks, it is difficult to obtain clear improvements for all

path BDPs using static initial windows. There are also works that
use dynamic initial window settings based on historical informa-
tion, including coarse-grained user group information [21, 25] and
fine-grained connection information [12, 13]. However, for mobile
networks, initial window settings are not all-inclusive. Even if the
historical information is accurate, the fluctuating mobile networks
may invalidate the historical information. Therefore, WiseStart not
only reuses the historical connection information, but also performs
path probe and convergence accordingly.

In addition to the initial CWND, it is critical to properly design
the timing of the exit from slow start. The CWND growth expo-
nentially in the slow start phase. As the CWND approaches the
BDP of the path, it may also overshoot the link capacity, causing
unnecessary congestion, which was also observed in our experi-
ments (Fig. 9). Therefore, some researches focused on the exit point
of slow start, such as setting a new threshold to decelerate the slow
start [4] and using richer metrics (e.g. RTT) to determine [9, 14].
WiseStart can be combined with any of these optimization methods,
and in our experiments, WiseStart uses Hystart++ algorithm [9].

6 CONCLUSION
We propose WiseStart, a new slow start mechanism for mobile web
services. WiseStart reuses priori knowledge for the new connection,
continuously probes the new connection to handle the fluctuating
network conditions, and carefully adapts to the possible application-
limit scenarios. We implement WiseStart in a popular mobile web
service, and evaluate it in both emulated and production environ-
ments. Experiments show that WiseStart reduces the First AFT by
25.43% and the average RCT at connection establishment by 16.15%
in different scenarios.

This work does not raise any ethical issues.

ACKNOWLEDGEMENTS
We sincerely thank anonymous reviewers, and labmates in Routing
Group from Tsinghua University for their valuable feedback. The
research was supported by the National Natural Science Founda-
tion of China under Grant 62221003, Grant 62002192 and Meituan.
Mingwei Xu and Enhuan Dong are the corresponding authors of
the paper.

REFERENCES
[1] android - service is killed after a short period of time (1 minute) - stack overflow.

https://stackoverflow.com/questions/51458421/service-is-killed-after-a-short-
period-of-time-1-minute.

[2] Background execution limits | android developers. https://developer.android.co
m/about/versions/oreo/background#services.

[3] ngtcp2. https://github.com/ngtcp2/ngtcp2.
[4] Limited Slow-Start for TCP with Large Congestion Windows. RFC 3742, March

2004.
[5] The Importance of Being Seen. https://think.storage.googleapis.com/docs/the-

importance-of-being-seen_study.pdf, 2014.
[6] Initcwnd settings of major CDN providers. https://www.cdnplanet.com/blog/ini

tcwnd-settings-major-cdn-providers/, 2017.
[7] Is “the fold” still a thing in today’s scrolling and skimming culture? https:

//www.mobilespoon.net/2019/05/fold-still-thing-in-todays-scrolling.html, 2019.
[8] Soheil Abbasloo, Chen-Yu Yen, and H Jonathan Chao. Classic meets modern: A

pragmatic learning-based congestion control for the internet. In ACM SIGCOMM,
2020.

[9] P Balasubramanian, Y Huang, and M Olson. Hystart++: Modified slow start
for tcp. Internet-Draft draft-balasubramanian-tcpmhystartplusplus-03, Internet
Engineering Task Force, 2020.

2877

https://stackoverflow.com/questions/51458421/service-is-killed-after-a-short-period-of-time-1-minute
https://stackoverflow.com/questions/51458421/service-is-killed-after-a-short-period-of-time-1-minute
https://developer.android.com/about/versions/oreo/background#services
https://developer.android.com/about/versions/oreo/background#services
https://github.com/ngtcp2/ngtcp2
https://think.storage.googleapis.com/docs/the-importance-of-being-seen_study.pdf
https://think.storage.googleapis.com/docs/the-importance-of-being-seen_study.pdf
https://www.cdnplanet.com/blog/initcwnd-settings-major-cdn-providers/
https://www.cdnplanet.com/blog/initcwnd-settings-major-cdn-providers/
https://www.mobilespoon.net/2019/05/fold-still-thing-in-todays-scrolling.html
https://www.mobilespoon.net/2019/05/fold-still-thing-in-todays-scrolling.html

Cold Start or Hot Start? Robust Slow Start in Congestion Control with A Priori Knowledge for Mobile Web Services WWW ’24, May 13–17, 2024, Singapore, Singapore

[10] Jerry Chu, Nandita Dukkipati, Yuchung Cheng, and Matt Mathis. Increasing
tcp’s initial window. Technical report, 2013.

[11] Gorry Fairhurst, Arjuna Sathiaseelan, and Raffaello Secchi. Updating tcp to
support rate-limited traffic. Technical report, 2015.

[12] Lingfeng Guo and Jack YB Lee. Stateful-tcp—a new approach to accelerate tcp
slow-start. IEEE Access, 8:195955–195970, 2020.

[13] Lingfeng Guo, Yan Liu, et al. Stateful-bbr–an enhanced tcp for emerging high-
bandwidth mobile networks. In 2021 IEEE/ACM 29th International Symposium on
Quality of Service (IWQOS). IEEE, 2021.

[14] Sangtae Ha and Injong Rhee. Taming the elephants: New tcp slow start. Computer
Networks, 55(9):2092–2110, 2011.

[15] Li Li, Ke Xu, Tong Li, Kai Zheng, Chunyi Peng, Dan Wang, Xiangxiang Wang,
Meng Shen, and Rashid Mijumbi. A measurement study on multi-path tcp with
multiple cellular carriers on high speed rails. In ACM SIGCOMM, 2018.

[16] Zili Meng, Yaning Guo, Yixin Shen, et al. Practically deploying heavyweight
adaptive bitrate algorithms with teacher-student learning. IEEE/ACM TON,
29(2):723–736, 2021.

[17] Zili Meng, Yaning Guo, Chen Sun, et al. Achieving consistent low latency for
wireless real-time communications with the shortest control loop. In ACM
SIGCOMM, 2022.

[18] Arvind Narayanan, Eman Ramadan, Rishabh Mehta, Xinyue Hu, et al. Lumos5g:
Mapping and predicting commercial mmwave 5g throughput. In ACM IMC, 2020.

[19] Arvind Narayanan, Xumiao Zhang, et al. A variegated look at 5g in the wild:
performance, power, and qoe implications. In ACM SIGCOMM, 2021.

[20] Ravi Netravali, Anirudh Sivaraman, Somak Das, Ameesh Goyal, et al. Mahimahi:
Accurate record-and-replay for http. In USENIX ATC, 2015.

[21] Xiaohui Nie, Youjian Zhao, et al. Reducing web latency through dynamically
setting tcp initial window with reinforcement learning. In IEEE/ACM IWQoS,
2018.

[22] Dr. Craig Partridge, Sally Floyd, and Mark Allman. Rfc2414-increasing tcp’s
initial window. 1998.

[23] Jan Rüth and Oliver Hohlfeld. Demystifying tcp initial window configurations
of content distribution networks. In IEEE TMA, 2018.

[24] SPEED MATTERS. Designing for Mobile Performance, 2017.
https://www.awwwards.com/brainfood-mobile-performance-vol3.pdf.

[25] Ruitao Xie, Xiaohua Jia, and Kaishun Wu. Adaptive online decision method for
initial congestion window in 5g mobile edge computing using deep reinforcement
learning. IEEE Journal on Selected Areas in Communications, 38(2):389–403, 2019.

[26] Yaxiong Xie, Fan Yi, et al. PBE-CC: Congestion control via endpoint-centric,
physical-layer bandwidth measurements. In ACM SIGCOMM, 2020.

[27] Xinlei Yang, Hao Lin, Zhenhua Li, et al. Mobile access bandwidth in practice:
Measurement, analysis, and implications. In ACM SIGCOMM, 2022.

[28] Jia Zhang, Enhuan Dong, Zili Meng, Yuan Yang, Mingwei Xu, Sijie Yang, Miao
Zhang, and Yang Yue. Wisetrans: Adaptive transport protocol selection for mobile
web service. In Proceedings of the Web Conference, pages 284–294, 2021.

2878

	Abstract
	1 Introduction
	2 Motivation
	2.1 Why optimize the slow start?
	2.2 Design Opportunity
	2.3 Design Challenges

	3 Design
	3.1 Design Overview
	3.2 Set initial parameters with priori knowledge
	3.3 Probe the new connection
	3.4 Adapt to application-limit scenarios

	4 Evaluation
	4.1 Experimental Setup
	4.2 Real-world performance
	4.3 Improvement on First AFT
	4.4 WiseStart Deep Dive

	5 Related work
	6 Conclusion
	References

